No.169
2020.07.10
秘密を保持したままAIを共同開発
Federated Learning(フェデレーテッドラーニング)
概要
Federated Learning(フェデレーテッドラーニング:連合学習)は、データを自社外に出さずに共同で学習モデルを開発する機械学習の枠組み。従来のアプローチとは異なり、モデルパラメータのみを集めてより洗練されたモデルを作成・再配布する。個々の端末ノードのデータは共有・転送されることがなく、プライバシー規制への準拠が強化されるため、医療や金融分野における機密情報がはるかに扱われやすくなると期待される。
なにがすごいのか?
集約されたビッグデータによるAI共同開発
様々な異業種間での同一でないデータの共有が可能
データプライバシー保護の問題を解決
なぜ生まれたのか?
AI開発において、1社だけで行うよりも、各企業が自社データを持ち寄れば、集約された生データによって学習モデルの精度が上がることは想像に難くない。しかし、各企業が自社データを他社に公開するには、プライバシーやセキュリティ、データアクセス権、異種データへのアクセスなどの問題をクリアする必要がある。2017年、Google社は、これらの問題に対処した上で複数企業によるAIの共同開発を加速すべく「連合学習」の枠組みを発表するに至った。
なぜできるのか?
ローカルモデルの集約
スマートフォンなどの端末ノードにて、各ユーザーの行動パターンといったローカルデータを用いてローカルモデルを訓練する(スマートフォン使用環境を最適化する)。ユーザーの個人情報などを外部に出すことなく、重みやバイアスといった学習モデルパラメータのみをノード間で交換し、中央サーバーに送信する。
グローバルモデルの更新
集約されたモデルパラメータを基に、中央サーバーにて、グローバルモデルのパラメータを更新する。これは、すべてのローカルデータが1つのサーバーにアップロードされる集中型機械学習手法や、ローカルデータが同一に分散していると想定する分散型アプローチといった従来のアプローチとは対照的である。
相性のいい産業分野
この知財の情報・出典
この知財は様々な特許や要素技術が関連しています。
詳細な情報をお求めの場合は、お問い合わせください。
この記事のタグ